Mold Diseases

Many diseases in horses have been associated with the presence of molds. These diseases involve guttural pouches, lungs, eyes, skin, the reproductive system, and the body as a whole.

GUTTURAL POUCHES

Molds have been isolated from infected guttural pouches in horses worldwide. Such associations have been made in India (Pal, 1996), Korea (Ha Tae Yong et al., 1995), France (Guillot et al., 1996), Japan (Takatori et al., 1984; Yoshihara et al., 1994), Italy (Gresti et al., 1993), and the United States.

The most common molds isolated from equine guttural pouches are *Aspergillus*, *Penicillium*, and *Candida* (Grabner, 1987). Perhaps the most important report for this group is a case where a liquid pellet feed binder was found to be the source of infection for a horse with guttural pouch disease. *Aspergillus* sp. was cultured from the guttural pouch, the mixed feed, and the liquid pellet binder (McLaughlin and O’Brien, 1986).

Early reports did not identify the particular species of *Aspergillus*. Several secondary problems were identified early on, including erosion of the internal carotid artery, cranial nerve damage (Hilbert et al., 1981), and blindness (Hatziolos et al., 1975). Later studies reported the species of *Aspergillus* responsible for disease.

Aspergillus nidulans is the *Aspergillus* species most frequently isolated from equine guttural pouches. The association between *Aspergillus nidulans* and guttural pouch mycosis was first recognized in the early 1970s (Johnson et al., 1973; Johnson and Attleberger, 1973). Soon thereafter an association between *Aspergillus nidulans* guttural pouch mycosis and nosebleeds was made (Lingard et al., 1974). Coughing, nasal discharge, and loss of 100 kg in 16 days occurred in a horse with *Aspergillus nidulans* guttural pouch mycosis (Krogh and Lundegaard, 1986). *Aspergillus nidulans* guttural pouch mycosis has been recognized in India (Pal,
Aspergillus nidulans has recently been renamed Emericella nidulans. Horses have bled to death after erosion of the carotid artery due to Emericella nidulans infection of the guttural pouch (Guillot et al., 1997; Matsuda et al., 1999). Emericella nidulans and Aspergillus fumigatus were isolated from the guttural pouches of four Thoroughbreds using endoscopy. Three of the horses were killed because of their poor prognosis (Anzai et al., 2000).

Two other species of Aspergillus are commonly isolated from equine guttural pouches. Aspergillus fumigatus from a guttural pouch infection has caused an atlanto-occipital joint infection (Dixon and Rowlands, 1981) and nasal discharge (Greet, 1981). Guttural pouch mycosis has also been caused by Aspergillus ochraceus (Gresti et al., 1993).

A Penicillium sp. mold was isolated from the guttural pouch of a horse with a fistula that developed from a guttural pouch mycosis (Jacobs and Fretz, 1982).

LUNGS

Aspergillus has also been associated with lung lesions in horses. Both acute and chronic forms of the disease have been identified (Sudaric et al., 1979). An association between GI disease and pulmonary aspergillosis has been suspected. Invasive pulmonary aspergillosis was identified in 19 horses; 16 of them also had enterocolitis (Slocombe and Slauson, 1988). Endocarditis and pulmonary aspergillosis developed in an 8-year-old Quarter Horse after surgery (Pace et al., 1994). Three Thoroughbreds died after a five-day illness of apathy, fever, lacrimation, and dyspnea after being transferred to a new stable. They died with thrombosis, hemorrhage, and tissue necrosis. A diagnosis of pneumonia caused by Aspergillus niger was made (Rhizopus stonifer was also isolated) (Carrasco et al., 1997). The sudden death of two horses was attributed to the rapid and acute development of pulmonary aspergillosis. One horse developed it after surgery, the other while being treated for equine protozoal myelitis (Johnson et al., 1999).

EYES

A variety of molds has been isolated from the eyes of horses with keratitis (Hamilton et al., 1994). Alternaria, Aspergillus, Actinomyces, Candida, Fusarium, Penicillium, and Mucor have been isolated from 11 cases of keratomycoses in Pennsylvania (Beech et al., 1983). Additionally, Rhizopus (Scherzer et al., 1998), Cephalosporium, and Phycomyces have been isolated. Aspergillus is the most prevalent (Moore et al., 1983). Of 31 keratombiosis cases in Texas, 11 were Aspergillus and four were Penicillium (Coad et al., 1985).

Molds and Mycotoxins

1996), Korea (Ha TaeYong et al., 1995), France (Guillot et al., 1996), and Japan (Takatori et al., 1984; Kanemitsu et al., 1995). Aspergillus nidulans has recently been renamed Emericella nidulans. Horses have bled to death after erosion of the carotid artery due to Emericella nidulans infection of the guttural pouch (Guillot et al., 1997; Matsuda et al., 1999). Emericella nidulans and Aspergillus fumigatus were isolated from the guttural pouches of four Thoroughbreds using endoscopy. Three of the horses were killed because of their poor prognosis (Anzai et al., 2000).

Two other species of Aspergillus are commonly isolated from equine guttural pouches. Aspergillus fumigatus from a guttural pouch infection has caused an atlanto-occipital joint infection (Dixon and Rowlands, 1981) and nasal discharge (Greet, 1981). Guttural pouch mycosis has also been caused by Aspergillus ochraceus (Gresti et al., 1993).

A Penicillium sp. mold was isolated from the guttural pouch of a horse with a fistula that developed from a guttural pouch mycosis (Jacobs and Fretz, 1982).

LUNGS

Aspergillus has also been associated with lung lesions in horses. Both acute and chronic forms of the disease have been identified (Sudaric et al., 1979). An association between GI disease and pulmonary aspergillosis has been suspected. Invasive pulmonary aspergillosis was identified in 19 horses; 16 of them also had enterocolitis (Slocombe and Slauson, 1988). Endocarditis and pulmonary aspergillosis developed in an 8-year-old Quarter Horse after surgery (Pace et al., 1994). Three Thoroughbreds died after a five-day illness of apathy, fever, lacrimation, and dyspnea after being transferred to a new stable. They died with thrombosis, hemorrhage, and tissue necrosis. A diagnosis of pneumonia caused by Aspergillus niger was made (Rhizopus stonifer was also isolated) (Carrasco et al., 1997). The sudden death of two horses was attributed to the rapid and acute development of pulmonary aspergillosis. One horse developed it after surgery, the other while being treated for equine protozoal myelitis (Johnson et al., 1999).

EYES

A variety of molds has been isolated from the eyes of horses with keratitis (Hamilton et al., 1994). Alternaria, Aspergillus, Actinomyces, Candida, Fusarium, Penicillium, and Mucor have been isolated from 11 cases of keratomycoses in Pennsylvania (Beech et al., 1983). Additionally, Rhizopus (Scherzer et al., 1998), Cephalosporium, and Phycomyces have been isolated. Aspergillus is the most prevalent (Moore et al., 1983). Of 31 keratombiosis cases in Texas, 11 were Aspergillus and four were Penicillium (Coad et al., 1985).
Aspergillus and Fusarium are most commonly isolated. Of 39 horses treated for ulcerative keratomycosis, Aspergillus was isolated from 13 and Fusarium from 10 (Andrew et al., 1998). Aspergillus and Fusarium sp. were also reported in a second study (Kern et al., 1983). Aspergillus flavus (Grahn et al., 1993; Collins et al., 1994), Aspergillus fumigatus (Aho et al., 1991), and Aspergillus oryzae (Marolt et al., 1984) are the most commonly reported Aspergillus species. Fusarium has been isolated in a number of cases also (Mitchell and Attleburger, 1973; Hodgson and Jacobs, 1982). Of six cases with keratomycosis, Aspergillus was isolated from three, Fusarium from two, and Cladosporium from one (Peiffer, 1979).

REPRODUCTIVE SYSTEM

Molds have also been reported to cause abortions as well as uterine and placental infections. Fungi were cultured from nine of 100 aborted horses in India. Candida tropicalis was in three, Aspergillus fumigatus in three, Candida albicans in two, and Cryptococcus laurentii in one (Monga et al., 1983). Of 2000 pregnancies followed in India, 175 abortions occurred. Six were caused by fungi. The fungi involved were Mucor (three), Aspergillus (two), and Microsporum (one) (Garg and Manchanda, 1986). Aspergillus fumigatus has been diagnosed as the cause of abortion in two Thoroughbred mares (Plagemann et al., 1992).

Aspergillus fumigatus and Candida albicans were isolated from mares with uterine infections (Blue, 1983). Fungi isolated from the uteri of mares with endometritis are Actinomyces, Aspergillus, Candida, Coccidiodes, Hansenula, Monosporium, Mucor, Nocardia, Paecilomyces, and Trichosporon (Pugh et al., 1986). Of 27 mares with chronic infertility problems, Alternaria sp., Aspergillus flavus, A. fumigatus, A. niger, Mortierella wolfi, and Mucor sp. were isolated from cervical, vaginal, or clitoral fossa swabs (Verma and Gupta, 1983). Of 200 cases of infective placentitis, 37 were caused by Aspergillus fumigatus and 14 by Absidia sp. (Whitwell and Powell, 1988).

SKIN

Of 1090 horses examined, most had Trichophyton equinum skin disease, but Aspergillus infection was common (Takatori et al., 1981).

SEPTICEMIA

An 18-year-old Morgan had a 10-day history of watery diarrhea, depression, and dysphagia. It died four days after being referred to a veterinary teaching hospital. Aspergillus niger was identified as the cause of vasculitis and brain infarction (Tuney et al., 1999). Mucor and Rhizopus were associated with a horse that developed myocarditis and nephritis after surgery (Peet et al., 1981).
Horses have developed systemic mold infections after corticosteroid treatment or natural immunosuppression. Fatal pulmonary infections with *Aspergillus flavus* and *A. niger* developed after corticosteroid immunosuppression (Weiler et al., 1994) or colic treatment (Smith et al., 1981). A horse with myelomonocytic leukemia developed pulmonary aspergillosis after phenylbutazone and corticosteroid therapy (Blue et al., 1987) or without such therapy (Buechner-Maxwell et al., 1994). A chronic bronchopulmonary *Aspergillus* infection was diagnosed in a 30-year-old Saddlebred with Cushing’s syndrome (Carrasco et al., 1996).

Mold Allergies

Chronic obstructive pulmonary disease (COPD) is also referred to as “heaves,” “broken wind,” or “pulmonary emphysema.” The syndrome was first reported in the early 1970s. Eight horses were reported as having an allergic pneumonitis that was clinically and pathologically similar to farmer’s lung in humans (Paul et al., 1972). The pathology has been described as peribronchitis, perivasculitis, and interstitial pneumonitis with foci and nodules of macrophages containing refractile particles of inorganic dust in alveoli (Chen et al., 1989). Considerable work has gone into determining the factors that predispose horses to the disease.

Molds were one of the predisposing factors initially considered. Using the method available at the time, exposure of horses to *Penicillium*, *Alternaria*, *Epicoccum*, and *Cladosporium* molds was found to have little relationship to the existence of the disease (Halliwell et al., 1979). Poor ventilation of the stable did seem to increase the chance of a horse becoming affected with COPD. However, gender, body weight, and season of onset of coughing did not seem to influence occurrence of the disease (McPherson et al., 1979b). After ruling out several factors, an immune component was investigated.

The possibility of COPD as a hypersensitivity disease has been considered (McPherson et al., 1979a; McGorum et al., 1993) and gained acceptance. Currently, evidence indicates that COPD is a delayed hypersensitivity response to inhaled antigens, particularly molds. It involves increased histamine, thromboxane, and 15-hydroxyeicosatetraenoic acid in bronchoalveolar lavage fluid (BALF), and decreased prostaglandin E₂ in airway mucosa (Robinson et al., 1996).

Despite these advances, the diagnosis of COPD was elusive, largely because investigators focused on skin reactions and serum antibody titers. Although horses with COPD had strong skin reactions after intradermal injections of mold extracts, there was no correlation between fungal contamination and the incidence of COPD. *Aspergillus*, *Alternaria*, and *Hormodendron* extracts were tested (Eyre et al., 1972). Of 237 horses tested, 100 of which had COPD, no relationship between COPD and type I skin reactions was seen. Although many horses gave a type III reaction
to *Micropolyspora faeni* (Eriksen and Olson, 1990), more recent studies of dermal and pulmonary reactivities to *M. faeni, A. fumigatus*, and *T. vulgaris* indicate that intradermal testing is of limited value in investigating COPD (McGorum, 1993b).

Studies focusing on serum antibody titers have been equally disappointing. Circulating precipitins to *Micropolyspora faeni* and *Aspergillus fumigatus* were not restricted to horses with COPD, but did occur more frequently in horses with COPD (Lawson et al., 1979). In 119 serum samples, antibodies against *M. faeni* were demonstrated in 11, and among these, COPD was only confirmed in four (Eriksen et al., 1986). Serological tests are of little value in the diagnosis of COPD (Madelin et al., 1991). In eight horses tested with 67 extracts from different allergens, significant difference was evident between horses with COPD and healthy horses in only 3% of the possible extracts (Evans et al., 1992). Higher titers of anti-*Micropolyspora faeni*, anti-*Aspergillus fumigatus*, and anti-hay mold precipitins were observed in the serum samples of horses positive for equine influenza antibodies (Chabchoub et al., 1994). Fortunately, BALF has been investigated.

Recently, use of BALF has shed light on the diagnosis of COPD. *Micropolyspora faeni* and *Aspergillus fumigatus* were identified as common causes of respiratory hypersensitivity in horses affected with COPD (McPherson et al., 1979a). An ELISA was used to measure specific antibodies to *Micropolyspora faeni* and to *Aspergillus fumigatus* in the serum and BALF of normal horses, horses with COPD, and horses with other respiratory diseases. Elevated antibody results were not detected in the sera of any horses, but IgE and IgA antibodies to both allergens were significantly elevated in BALF of COPD horses (Halliwell et al., 1993). Horses with COPD have significantly higher levels of BALF IgE and IgG to *A. fumigatus* antigens but no significant differences in serum (Schmallenbach et al., 1998).

Treatment has been developed. Sodium cromoglycate (80 mg) prevented exacerbation of the respiratory disease for four to five days after exposure to *Micropolyspora faeni* (Murphy et al., 1979).

Mycotoxins (Forage)

FESCUE

Fescue toxicosis in horses has been recognized for decades. Nevertheless, the mechanism of action and successful management practices are only now being reported. The prevalence of exposure, clinical signs, management, and treatment reports are briefly summarized.

Despite decades of knowledge of the potential for toxicosis from endophyte-infested fescue, many horses remain exposed. Of 207 equine owners and veterinarians responding to a recent survey, fescue was the predominant forage on 50% of pastures and was present on 70%. Almost 50% of the broodmares in the
survey were exposed to endophyte-infected fescue, and 43% had signs of toxicosis requiring treatment or management to reduce the problem (Anas et al., 1998).

The clinical signs of fescue toxicosis are well known. Pregnant mares develop agalactia, stillbirth, and thickened and retained placentas (Bennett-Wimbush and Loch, 1998). In addition, mares have dystocias (McCann et al., 1992), increased gestation length, increased foal and mare mortality, weak and dysmature foals, and increased sweating during warm weather (Cross et al., 1995). The prevalence of clinical signs is not the same in each case. For example, in one study approximately 26% of 1010 mares on fescue pasture had fescue toxicosis, 53% had agalactia, 38% had prolonged pregnancy, 18% had abortions, and 9% had thickened placentas (Garrett et al., 1980).

Mares are not the only horses affected. Average daily gain for yearlings is lower on fescue with high infection rates versus low infection rates (Aiken et al., 1993). Fiber digestibility of endophyte-positive hay is lower than that for endophyte-negative hay (McCann et al., 1992).

The mechanism for these signs long eluded researchers but may now have been discovered. Decreased perfusion of peripheral tissues (Adney et al., 1993) and impaired endometrial cup function mechanisms were investigated (Brendemuehl et al., 1996). Reduced serum prolactin and progesterone and increased serum estradiol 17 beta levels have been observed (Cross et al., 1995). At this point, it appears that ergovaline in tall fescue infested with Neotyphodium coenophialum explains the clinical signs and laboratory results previously reported (McClusky et al., 1999).

Fescue toxicosis may be dealt with by management or treatment. A rotational grazing technique allows use of fescue for growing horses. Even though endophyte-infected tall fescue hay may be less digestible in horses than uninfected hay (Redmond et al., 1991), young growing horses being exercised can efficiently use the endophyte-infected fescue on a short-term basis (Pendergraft et al., 1993). Similar techniques can be used in mares.

If mares are removed from fescue late in gestation, most signs of toxicosis can be eliminated or reduced. Withdrawal from infected fescue before parturition results in a rise in serum prolactin levels, allowing milk production (Redmond et al., 1991). Mares moved to endophyte-free pasture at 305 to 310 days of gestation delivered live foals and lactated normally. Supplementation of energy requirements to these mares while grazing endophyte-infected fescue was of little or no benefit (Earle et al., 1990).

Effective treatments after signs develop are also being developed. Selenium treatment is not effective (Monroe et al., 1988). Fluphanazine has been considered (Bennett-Wimbush and Loch, 1997), and domperidone looks promising. Daily oral doses of 1.1 mg/kg body weight domperidone prevented symptoms of fescue toxicosis in late gestation mares on endophyte-infested fescue forage (Cross et al., 1999). A single injection of a long-acting dopamine receptor antagonist may be
beneficial in reducing the effects of fescue toxicosis in pregnant mares grazing endophyte-infected tall fescue pastures (Bennett-Wimbush and Loch, 1998).

RYEGRASS

Ataxia, tremors, and paralysis were observed in a group of horses and then several weeks later in a second group ingesting the same hay. The horses were ingesting ryegrass hay containing 5 to 6 mg lolitrem B/kg (Van Oldruitenborgh-Oosterbaan et al., 1999). A stallion ingesting 1.5 and 2.5 mg lolitrem B/kg also experienced ryegrass staggers. Trembling, hyperexcitability, and abdominal muscular spasms developed suddenly in ponies fed exclusively ryegrass seed cleanings shown to contain 5.3 mg lolitrem B/kg (Munday et al., 1985; Hintz, 1990).

SWEET CLOVER

Spontaneous nosebleeds developed in a 6-year-old Percheron mare fed weathered sweet clover (McDonald, 1980).

RED CLOVER

Excessive salivation and increased water consumption were observed in horses eating red clover or lucerne infested with *Rhizoctonia leguminicola*. Slaframine was associated with the parasympathetic signs (Socket et al., 1982). The slaframine breaks down with time. It fell from 100 mg/kg to 7 mg/kg after ten months of storage (Hagler and Behlow, 1981).

ALSIKE CLOVER

Photosensitization and biliary fibrosis may occur in horses ingesting alsike clover (*Trifolium hybridum*) (Nation, 1989). Chronic or nervous clinical signs and liver disease, including biliary fibrosis and epithelial proliferation, may occur (Nation, 1991). Icterus and photosensitization are followed by nervous signs in almost 80% of cases (Zientara, 1993). Icterus of the sclera, oral and vulvar membranes and dermatitis of the muzzle and vulva, as well as increased serum liver enzymes have recently been reported in horses ingesting alsike clover (Colon et al., 1996).

Mycotoxins (Grains)

FUMONISIN

Fumonisins are new mycotoxins that are of great significance to horse owners. Like aflatoxin, they are suspected of being carcinogenic, so feed entering interstate
commerce will be subject to regulation based on its fumonisin content. FDA’s guidance document issued June 6, 2000 indicates that corn or corn by-products intended for horses may contain five ppm fumonisin B_1, plus B_2, plus B_3, but comprise no more than 20% of the diet.

Fumonisins are produced by *Fusarium moniliforme*, which causes “stalk rot” in corn. Fumonisin toxicosis in horses has primarily been caused by corn screenings or corn-containing feed. Fumonisin causes equine leukoencephalomalacia (ELEM), liver necrosis, and occasionally death in horses. Quite a number of field and experimental reports have substantiated this.

Although “moldy corn poisoning” of horses has been recognized for decades, fumonisin was not identified as the causative agent until 1988. Investigators in South Africa were the first to make the connection (Marasas et al., 1988; Kellerman et al., 1990; Thiel et al., 1991; Sydenham et al., 1992; Sydenham et al., 1993). Since then, fumonisin toxicosis in horses has been recognized in Italy (Carmelli et al., 1993), Australia (Shanks et al., 1995), Hungary (Fazekas and Bajmicy, 1996; Fazekas et al., 1997), Mexico (Rosiles et al., 1996), France (Guerré et al., 1997), Turkey (Akar and Sarii, 1998), and the United States. The reports from North America are summarized.

In the United States, several cases of fumonisin toxicosis were diagnosed in 1989 and 1990. No clinical cases occurred in horses ingesting feed with less than eight ppm fumonisins (Wilson et al., 1990; Ross et al., 1991a,b). In 1991 and 1992, fumonisin B_1 and B_2 were detected at concentrations higher than 10 ppm in 16% of 291 Indiana corn samples tested (Binkerd et al., 1993), so studies of the dose to produce toxicity were initiated.

A pony fed a diet of 22 ppm fumonisin for 55 days suddenly died (Wilson et al., 1991; Wilson et al., 1992; Ross et al., 1993). *Fusarium moniliforme* was isolated from each feed sample of 125 horses affected with ELEM (Wilson et al., 1990a,b,c). One hundred donkeys died in Mexico with ELEM after ingesting feed containing 0.67 to 13.3 mg fumonisin B_1 (Rosiles et al., 1998), and four Thoroughbreds developed ELEM after ingesting corn containing 46 to 53 µg/g fumonisin B_1 (Mallmann et al., 1999).

Fusarium moniliforme produces fumonisin B_1, B_2, and B_3. Early studies focused on fumonisin B_1, but it now appears that fumonisin B_2 can also contribute to toxicosis (Ross et al., 1994). Fumonisin B_2 at 75 ppm (0.75 mg/kg body weight daily) caused hepatotoxicity and ELEM in ponies. Fumonisin B_2 is more effective than fumonisin B_1 in causing toxicity (Riley et al., 1997). The fumonisins appear to cause ELEM by interfering with myelin synthesis.

Both fumonisin B_1 and B_2 disrupt sphingolipid metabolism (Riley et al., 1997). So, the ratio of sphinganine to sphingosine may be elevated in horses exposed to fumonisin B_1 or B_2 (Goel et al., 1996). This testing of serum or liver is being used to diagnose exposure to fumonisin. Aflatoxin is the other mycotoxin that is a suspected carcinogen.
AFLATOXIN

Aflatoxin is primarily produced by Aspergillus molds and occasionally by Penicillium molds. Grain in interstate commerce is currently regulated based on its aflatoxin concentration because it is a suspected carcinogen. The major concerns to horse owners though are liver disease, death, and abortion.

Signs of aflatoxicosis in nonpregnant horses include mild fever, anorexia, depression, incoordination, and marked swelling of the supraorbital fossae (Poomvises et al., 1982; Asquith et al., 1983). Signs of inappetence, depression, tremors, and prostration have also been reported (Cysewski et al., 1982). Liver disease develops in horses receiving more than 0.075 mg/kg aflatoxin B1 (Cysewski et al., 1982), but liver enzymes return to normal within 10 days of removing the source (Aller et al., 1981).

Equine deaths have been reported in field and experimental cases. Three horses had severe hepatic necrosis and died after ingesting corn containing aflatoxin B1, B2 and M1 at 114, 10 and 6 ppb, respectively (Vesonder et al., 1991).

All ponies given 4 mg/kg aflatoxin B1 died and half given 2 mg/kg died (Bortell et al., 1983). Death occurred at 12 to 16 days in horses dosed with 0.3 mg/kg aflatoxin B2, at 25 to 32 days if dosed with 0.15 mg/kg, and at 36 to 39 days if dosed with 0.075 mg/kg (Cysewski et al., 1982). Mortality rates of 25% are reported in field cases (Poomvises et al., 1982).

Abortion is not reported in most species ingesting aflatoxin unless the dam is quite ill. However, a report of 17 of 63 mares aborting 6- to 9-month-old feti after ingesting feed containing 250 ppb aflatoxin B1 exists (Xie et al., 1991).

ERGOT

Symptoms of ergot toxicosis developed in several horses fed Bermuda grass hay (Lindley, 1978). Achnatherum inebrians (drunken horse grass) in China contained ergonovine and lysergic acid amide at 2500 and 400 mg/kg, respectively (Miles et al., 1996).

DEOXYNIVALENOL

Reduced general condition was noted in horses fed for six to eight weeks on oat samples containing 20 ppm deoxynivalenol and 2 ppm zearalenone (Bauer and Gedek, 1980).
Table 1. Molds, mycoses and allergies in horses.

<table>
<thead>
<tr>
<th>Mold</th>
<th>System</th>
<th>Mold</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absidia</td>
<td>Reproductive</td>
<td>Candida tropicalis</td>
<td>Reproductive</td>
</tr>
<tr>
<td>Actinomyces</td>
<td>Eyes</td>
<td>Cephalosporium</td>
<td>Eyes</td>
</tr>
<tr>
<td>Actinomyces</td>
<td>Reproductive</td>
<td>Cladosporium</td>
<td>Eyes</td>
</tr>
<tr>
<td>Alternaria</td>
<td>Eyes</td>
<td>Coccidiodes</td>
<td>Reproductive</td>
</tr>
<tr>
<td>Alternaria</td>
<td>Reproductive</td>
<td>Cryptococcus laurentii</td>
<td>Reproductive</td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Eyes</td>
<td>Emericella nidulans</td>
<td>Guttural pouch disease</td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Guttural pouch</td>
<td>Fusarium</td>
<td>Eyes</td>
</tr>
<tr>
<td>flavus</td>
<td>disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Lungs</td>
<td>Hansenula</td>
<td>Reproductive</td>
</tr>
<tr>
<td>flavus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Reproductive</td>
<td>Microspora faeni</td>
<td>COPD</td>
</tr>
<tr>
<td>fumigatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Skin</td>
<td>Microsporum</td>
<td>Reproductive</td>
</tr>
<tr>
<td>fumigatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Eyes</td>
<td>Monosporum</td>
<td>Reproductive</td>
</tr>
<tr>
<td>fumigatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Reproductive</td>
<td>Mortierella wolfi</td>
<td>Reproductive</td>
</tr>
<tr>
<td>flavus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Septicemia</td>
<td>Mucor</td>
<td>Eyes</td>
</tr>
<tr>
<td>flavus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>COPD</td>
<td>Mucor</td>
<td>Reproductive</td>
</tr>
<tr>
<td>fumigatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Eyes</td>
<td>Mucor</td>
<td>Septicemia</td>
</tr>
<tr>
<td>fumigatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Guttural pouch</td>
<td>Nocardia</td>
<td>Reproductive</td>
</tr>
<tr>
<td>fumigatus</td>
<td>disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Reproductive</td>
<td>Paecilomyces</td>
<td>Reproductive</td>
</tr>
<tr>
<td>fumigatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Guttural pouch</td>
<td>Penicillium</td>
<td>Eyes</td>
</tr>
<tr>
<td>nidulans</td>
<td>disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Lungs</td>
<td>Penicillium</td>
<td>Guttural pouch disease</td>
</tr>
<tr>
<td>niger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Reproductive</td>
<td>Phycomyes</td>
<td>Eyes</td>
</tr>
<tr>
<td>niger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Septicemia</td>
<td>Rhizopus</td>
<td>Septicemia</td>
</tr>
<tr>
<td>ochraceus</td>
<td></td>
<td></td>
<td>Eyes</td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Guttural pouch</td>
<td>Rhizopus</td>
<td>Eyes</td>
</tr>
<tr>
<td>oryzae</td>
<td>disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida</td>
<td>Eyes</td>
<td>Rhizopus stonifer</td>
<td>Lungs</td>
</tr>
<tr>
<td>Candida</td>
<td>Guttural pouch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>albicans</td>
<td>disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida</td>
<td>Reproductive</td>
<td>Trichophyton equinum</td>
<td>Skin</td>
</tr>
<tr>
<td>Candida</td>
<td>Reproductive</td>
<td>Trichosporon</td>
<td>Reproductive</td>
</tr>
</tbody>
</table>

Table 2. Molds and mycotoxins in horse feeds.

<table>
<thead>
<tr>
<th>Mold</th>
<th>Source</th>
<th>Mycotoxin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acremonium coenophialum</td>
<td>Fescue</td>
<td>Ergovaline</td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Grain</td>
<td>Aflatoxin</td>
</tr>
<tr>
<td>Claviceps purpure</td>
<td>Small grains</td>
<td>Ergot</td>
</tr>
<tr>
<td>Fusarium</td>
<td>Grain</td>
<td>Oxynivalenol</td>
</tr>
<tr>
<td>Fusarium moniliforme</td>
<td>Grain</td>
<td>Fumonisin</td>
</tr>
<tr>
<td>Neotyphodium coenophialum</td>
<td>Fescue</td>
<td>Ergovaline</td>
</tr>
<tr>
<td>Penicillium</td>
<td>Grain</td>
<td>Aflatoxin</td>
</tr>
<tr>
<td>Rhizoctonia leguminicola</td>
<td>Legumes</td>
<td>Slaframine</td>
</tr>
</tbody>
</table>

References

Archer M. Further studies on palatability of grasses to horses. J Br Grassland
Molds and Mycotoxins

Blomme E; Piero FD; La Perle KMD; Wilkins PA. Aspergillosis in horses: a review. Eq Vet Ed. 1998, 10: 2, 86-93.

Blood DC; Henderson JA; Radostits OM. Diseases caused by fungi. Veterinary Medicine. A textbook of the diseases of cattle, sheep, pigs and horses.

Brendemuehl JP; Carson RL; Wenzel JGW; Boosinger TR; Shelby RA. Effects of grazing endophyte-infected tall fescue on eCG and progestogen concentrations from gestation day 21 to 300 in the mare. Theriogenology. 1996, 46: 1, 85-96.

Bushee EL; Edwards DR; Moore PA. Quality of runoff from plots treated with municipal sludge and horse bedding. Transactions of the ASAE. 1998, 41: 4, 1035-1041.

Caramelli M; Dondo A; Cortellazzi GC; Visconti A; Minervini F; Doko MB; Guarda F. Leukoencephalomalacia in the equine caused by fumonisins: first report in Italy. Ippologia. 1993, 4: 4, 49-56.

Carrasco L; Mendez A; Jensen HE. Chronic bronchopulmonary aspergillosis in a horse with Cushing’s syndrome. Mycoses. 1996, 39: 11-12, 443-447.

Carvajal M; Barcenas E; Sanchez R; Mendoza S; Gomez H; Cardenas E. Fusarium related to leukoencephalomalacia and brain edema of horses. Proceedings Japanese Assoc Mycotoxicology. 1988, Supplement No. 1, 133-134.

Chen HT; Zhu XQ; Ni JB; Wang WH; Jia N. Pathological study on heaves in horses in Gansu province. Acta Veterinaria et Zootechnica Sinica. 1989,

Codazza D; Maffeo G; Giongo P; Gavazzi L; Proverbio E. Changes in some blood chemistry values of young trotters fed cereals contaminated with aflatoxin B1. Clinica Veterinaria. 1980, 103: 9-10, 577-584.

Cysewski SJ; Pier AC; Baetz AL; Cheville NF. Experimental equine aflatoxicosis. Toxicol Appl Pharm. 1982, 65: 3, 354-365.

Eriksen L; Deegen E (ed.); Beadle RE. Studies on Micropolyspora faeni and

Eriksson NE; Holmen A. Skin prick tests with standardized extracts of inhalant allergens in 7099 adult patients with asthma or rhinitis: cross-sensitizations and relationships to age, sex, month of birth and year of testing. J Investigational Allergology Clin Immunol. 1996, 6: 1, 36-46.

Falk-Ronne J; Gravesen S; Larsen L; Svenningsen J. Microorganisms in the air of a horse stable. Concentrations of *Aspergillus fumigatus* and actinomycetes with the use of straw and shredded newspaper as bedding material. Dansk-Veterinaertidsskrift. 1984, 67: 21, 1079-1083.

Ficken MD; Cummings TS; Wages DP. Cerebral encephalomalacia in commercial turkeys. Av Diseases. 1993, 37: 3, 917-922.

Firth EC; Pearce SG; Grace ND; Fennessy PF. Health care of the pregnant mare: evidence for copper supplementation. Ippologia. 1999, 10: 2, 49-52.

Freeman DE; Ross MW; Donawick WJ; Hamir AN. Occlusion of the external carotid and maxillary arteries in the horse to prevent hemorrhage from guttural pouch mycosis. Vet Surgery. 1989, 18: 1, 39-47.
Molds and Mycotoxins

Gabal MA; Awad YL; Morcos MB; Barakat AM; Malik G. Fusariotoxicoses of farm animals and mycotoxic leucoencephalomalacia of the equine associated with the finding of trichothecenes in feedstuffs. Vet Hum Toxicol. 1986, 28: 3, 207-212.

Garg DN; Manchanda VP; Chandiramani NK. Etiology of postnatal foal mortality. Indian J Comparative Microbiology, Immunology Infectious Diseases. 1985, 6: 1, 29-35.

Goel S; Schumacher J; Lenz SD; Kemppainen BW. Effects of Fusarium moniliforme isolates on tissue and serum sphingolipid concentrations in horses. Vet Hum Toxicol. 1996, 38: 4, 265-270.

Green EM; Loch WE; Messer NT; Blake-Caddel L. Maternal and fetal effects of endophyte fungus-infected fescue. Proceedings of the Thirty-Seventh Annual

Gresti A De; Barone P; Perniola N. A case of guttural pouch mycosis caused by Aspergillus ochraceus: diagnosis and therapy. Ippologia. 1993, 4: 3, 81-86.

Guerre P; Bailly JD; Le Bars J; Raymond I; Burgat V. Fumonisin poisoning in horses. 23rd day of equine research, Institut du Cheval, Paris, France, 26 February 1997. 1997, 43-52.

Hamilton HL; McLaughlin SA; Whitley EM; Gilger BC; Whitley RD. Histological findings in corneal stromal abscesses of 11 horses: correlation with cultures and cytology. Eq Vet J. 1994, 26: 6, 448-453.

Hatziolos BC; Sass B; Albert TF; Stevenson MC. Blindness in a horse probably caused by gutturomycosis. Zentralblatt-fur-Veterinarmedizin. 1975, 22B: 5, 362-371.

Hintz HF. Tall fescue pasture for horses. Eq Practice. 1987, 9: 2, 5-6.
Hintz HF. Ergotism. Eq Practice. 1988, 10: 5, 6-7.
Hintz HF. Molds, mycotoxins, and mycotoxicosis. Vet Clinics No Am, Eq Practice. 1990, 6: 2, 419-431.
Jacobs KA; Fretz PB. Fistula between the guttural pouches and the dorsal pharyngeal recess as a sequela to guttural pouch mycosis in the horse. Canadian Vet J. 1982, 23: 4, 117-118.
Johnson PJ; Moore LA; Mrad DR; Turk JR; Wilson DA. Sudden death of two horses associated with pulmonary aspergillosis. Vet Rec. 1999, 145: 1, 16-20.
Keratomycosis in the horse. Eq Practice. 1979, 1: 5, 32-37.
Khan ZU; Misra VC; Randhawa HS. Precipitating antibodies against *Micropolyspora faeni* in equines in north western India. Antonie van Leeuwenhoek. 1985, 51: 3, 313-319.

Khmelevskii BN; Pilipets ZI; Malinovskaya LS; Kostin VV; Komarnitskaya NP; Ivanov VG. Prophylaxis of mycotoxicoses in animals. 1985, p. 271.

Khmelevskii BN; Pilipets ZI; Malinovskaya LS; Kostin VV; Komarnitskaya NP; Ivanov VG. Prophylaxis of mycotoxicoses in animals. 1985. Agropromizdat; Moscow; USSR.

Laurent D; Pellegrin F; Kohler F; Costa R; Thevenon J; Demersemen P; Guillaume J; Platzer N. Is fumonisin B responsible for equine leucoencephalomalacia? Toxicon-Oxford. 1992, 30: 5-6, 530; Abstracts of plenary lectures, slide and poster presentations at the tenth World Congress on Animal, Plant and Microbial Toxins, Singapore, 3-8 November, 1991.

Lawson GHK; McPherson EA; Murphy JR; Nicholson JM; Wooding P; Breeze RG; Pirie HM. The presence of precipitating antibodies in the sera of horses with chronic obstructive pulmonary disease (COPD). Eq Vet J. 1979, 11: 3, 172-176.

Mallmann CA; Santurio JM; Dilkin P. Equine leukoencephalomalacia associated

Marasas WFO; Kellerman TS; Gelderblom WCA; Coetzer JW; Van Der Lugt JJ. Leukoencephalomalacia in a horse induced by fumonisin B₁ isolated from Fusarium moniliforme. Onderstepoort J Vet Res. 1988, 55: 4, 197-203.

McNally LK; Harbers LH; Smith WH. Nutritive value of three Kansas hays for the mature horse. Transactions of the Kansas Academy of Science. 1980, 83: 1, 36-43.

McPherson EA; Lawson GHK; Murphy JR; Nicholson JM; Breeze RG; Pirie HM. Chronic obstructive pulmonary disease (COPD) in horses: aetiological studies: responses to intradermal and inhalation antigenic challenge. Eq Vet J. 1979, 11: 3, 159-166.

McPherson EA; Lawson GHK; Murphy JR; Nicholson JM; Breeze RG; Pirie HM. Chronic obstructive pulmonary disease (COPD): factors influencing the occurrence. Eq Vet J. 1979, 11: 3, 167-171.

McPherson EA; Lawson GHK; Murphy JR; Nicholson JM; Breeze RG; Pirie HM. Chronic obstructive pulmonary disease (COPD) in horses: aetiological studies: responses to intradermal and inhalation antigenic challenge. Eq Vet J. 1979, 11: 3, 159-166.

Meacham VB; Meacham TN; Fontenot JP. Seasonal differences in apparent digestibility of fescue pasture by horses. Animal Science Research Report, Virginia Agricultural Experiment Station. undated, No. 5, 131-133.

Miles CO; Lane GA; Di Menna ME; Garthwaite I; Piper EL; Ball OJP; Latch GCM; Allen JM; Hunt MB; Bush LP; Fletcher I; Harris PS; Min-FK. High levels of ergonovine and lysergic acid amide in toxic *Achnatherum inebrians* accompany infection by an *Acremonium*-like endophytic fungus. J Ag Food Chem. 1996, 44: 5, 1285-1290.

Mirocha CJ; Abbas HK; Vesonder RF. Absence of trichotheccenes in toxigenic isolates of *Fusarium moniliforme*. Applied Environmental Microbiology. 1990, 56: 2, 520-525.

Monga DP; Tiwari SC; Prasad S. Mycotic abortions in equines. Mykosen. 1983, 26: 12, 612-614.

Morgan SE. Feeds, forages, and toxic plants. Eq Practice. 1996, 18: 1, 8-12.

Murphy JR; McPherson EA; Lawson GHK. The effects of sodium cromoglycate on antigen inhalation challenge in two horses affected with chronic obstructive pulmonary disease (COPD). Vet Immunol Immunopath. 1979, 1: 1, 89-95.

Nelson GH; Christensen CM; Keyl AC; Ribein WE; Garner GB; Connell CN; Mortimer PH; Di Menna ME; White EP; Marasas WFO; Kellerman TS; Kurmanov IA; Smalley EB; Scheel LD; Cysewski SJ; Mantle PG; Hintikka EL; Bridges CH; Armbrecht BH; Mortimer PH; Krogh P; Kurtz HJ; Mirocha CJ; Austwick PKC; Peckham JC; Joffe AZ; Carlton WW; Szczek EL; Sinnhuber RO; Wales JH; Wyllie TD (ed.); Morehouse LG (ed.). Mycotoxic fungi, mycotoxins, mycotoxicoses. An encyclopedic handbook. Volume 2. Mycotoxicoses of domestic and laboratory animals, poultry, and aquatic invertebrates and vertebrates. 1978.

Norred WP; Bacon CW; Porter JK; Voss KA. Inhibition of protein synthesis in rat primary hepatocytes by extracts of Fusarium moniliforme-contaminated corn. Food Chem Toxicol. 1990, 28: 2, 89-94.

Norred WP; Wang E; Yoo H; Riley RT; Merrill Jr. AH. In vitro toxicology of fumonisins and the mechanistic implications. Mycopathologia. 1992, 117: 1-2, 73-78.

Pace LW; Wirth NR; Foss RR; Fales WH. Endocarditis and pulmonary aspergillosis in a horse. J Vet Diagnostic Investigation. 1994, 6: 4, 504-506.

Park DL; Rua Jr. SM; Mirocha CJ; Abd-Alla EAM; Weng CY. Mutagenic potentials of fumonisin contaminated corn following ammonia decontamination procedure. Mycopathologia. 1992, 117: 1-2, 105-108.

Pearce SG; Grace ND; Firth EC; Wichtel JJ; Holle SA; Fennessy PF. Effect of copper supplementation on the copper status of pasture-fed young thoroughbreds. Eq Vet J. 1998, 30: 3, 204-210.

Pearce SG; Grace ND; Wichtel JJ; Firth EC; Fennessy PF. Effect of copper supplementation on copper status of pregnant mares and foals. Eq Vet J. 1998, 30: 3, 200-203.

Pereira AM; Tamarisho K; Macruz R; Salvadori MC. Aflatoxins in the feed of racehorses at the Sao Paulo Jockey Club. Atualidades Agroveterinarias. 1978, 6: 34, 6-8.

Pier AC; Newberne PM; Munro IC; Scott PM; Moodie CA; Willes RF; Wilson BJ; Harbison RD; Nelson GH; Christensen CM; Mirocha CJ; Smalley EB; Burfening PJ; Cysewski SJ; Wilson BJ; Maronpot RR; Hildebrandt PK; Carlton WW; Tuite J; Caldwell R; Richard JL; Lillehoj EB; Wessel JR; Stoloff L; Crump MH; Anon. Mycotoxicoses of domestic animals. J Am Vet Med Assoc. 1973, 163: 11, 1259-1302.

Molds and Mycotoxins

Plagemann O; Weber A; Singer H. *Aspergillus fumigatus* as the cause of abortion in two Thoroughbred mares. Tierarztliche-Umschau. 1992, 47: 12, 881-882.

Plattner RD; Ross PF; Reagor J; Stedelin J; Rice LG. Analysis of corn and cultured corn for fumonisin B₁ by HPLC and GC/MS by four laboratories. J Vet Diagnostic Investigation. 1991, 3: 4, 357-358.

Putman MR; Bransby DI; Schumacher J; Booserger TR; Bush L; Shelby RA; Vaughan JT; Ball D; Brendemuehl JP. Effects of the fungal endophyte *Acremonium coenophialum* in fescue on pregnant mares and foal viability. Am J Vet Res. 1991, 52: 12, 2071-2074.

Ragheb RR; Maysa H; Shaker KH; Rawia KH; Ebrahim. Mycotoxicosis as a field problem in equine. Egyptian J Comp Path Clin Pathology. 1995, 8: 2, 39-57.

Riley RT; Showker JL; Owens DL; Ross PF. Disruption of sphingolipid metabolism and induction of equine leukoencephalomalacia by *Fusarium proliferatum* culture material containing fumonisin B₂ or B₃. Environmental Toxicology and Pharmacology. 1997, 3: 3, 221-228.

Roberge R; Ladenheim S; Mahood CFP; Lesser RW; Roberts RR; Slovis CM; Molavi A; Blumberg EA; Shepherd SM; Whye Jr. DPW; Werman HA; Kelen GD; Schillinger D (ed.); Harwood-Nuss A (ed.). Infections in Emergency Medicine. Vol. 1. 1989, Churchill Livingstone; New York; USA.

Robertson-Smith RG; Jeffcott LB; Friend SCE; Badcoe LM. An unusual incidence of neurological disease affecting horses during a drought. Australian Vet J. 1985, 62: 1, 6-12.

Rosiles MR; Garcia TM; Ross FP. Physico-chemical confirmation of fumonisin B₁ in maize and in feed for horses which had died of leukoencephalomalacia. Veterinaria-Mexico. 1996, 27: 1, 111-113.

Ross PF; Rice LG; Osweiler GD; Nelson PE; Richard JL; Wilson TM. A review and update of animal toxicoses associated with fumonisin-contaminated feeds and production of fumonisins by Fusarium isolates. Mycopathologia. 1992, 117: 12, 109-114.

Ross PF; Rice LG; Reagor JC; Osweiler GD; Wilson TM; Nelson HA; Owens DL; Plattner RD; Harlin KA; Richard JL; Colvin BM; Banton MI. Fumonisin B₁ concentrations in feeds from 45 confirmed equine leukoencephalomalacia cases. J Vet Diagnostic Investigation. 1991a, 3: 3, 238-241.

Ross PF; Nelson PE; Richard JL; Osweiler GD; Rice LG; Plattner RD; Wilson TM. Production of fumonisins by Fusarium moniliforme and Fusarium proliferatum isolates associated with equine leukoencephalomalacia and a pulmonary edema syndrome in swine. Applied Environmental Microbiology. 1990, 56: 10, 3225-3226.

Ross PF; Rice LG; Plattner RD; Osweiler GD; Wilson TM; Owens DL; Nelson HA; Richard JL. Concentrations of fumonisin B₁ in feeds associated with animal health problems. Myopathologia. 1991b, 114: 3, 129-135.

Ross PF. What are we going to do with this dead horse? J AOAC International. 1994, 77: 2, 491-494.

Ross PF; Rice LG; Wilson TM; Osweiler GD; Nelson HA; Plattner RD; Reagor JC; Harlin KA; Colvin BM; Banton MI. Fumonisin B₁ concentrations in feeds from 40 confirmed equine leukoencephalomalacia cases. American Association of Veterinary Laboratory Diagnosticians: Abstracts 33rd Annual Meeting, Denver, Colorado, October 7-9, 1990. 1990, 60.

Scherzer S; Nell B; Suchy A. Five cases of keratomycosis in the horse in Austria. Wiener Tierarztliche Monatsschrift. 1998, 85: 5, 14-15.

Schmallenbach KH; Rahman I; Sasse HHL; Dixon PM; Halliwell REW; McGorum BC; Cramer R; Miller HRP. Studies on pulmonary and systemic Aspergillus fumigatus-specific IgE and IgG antibodies in horses affected with chronic obstructive pulmonary disease (COPD). Vet Immunol Immunopath. 1998, 66: 3-4, 245-256.

Schumacher J; Mullen J; Shelby R; Lenz S; Ruffin DC; Kemppainen BW. An investigation of the role of Fusarium moniliforme in duodenitis/proximal jejunitis of horses. Vet Hum Toxicol. 1995, 37: 1, 39-45.
M. Murphy 165

Schurg WA; Pulse RE; Holtan DW; Oldfield JE. Use of various quantities and forms of ryegrass straw in horse diets. J An Sci. 1978, 47: 6, 1287-1291.

Sudaric F; Marzan B; Ozegovic L. Pathological changes in acute and chronic Aspergillus pneumonia of horses. Veterinaria, Yugoslavia. 1979, 28: 3, 383-396.

Swerczek TW; Kirkbride CA (ed.). Perinatal mortality in foals caused by fescue grass toxicosis. Laboratory diagnosis livestock abortion. 1990, Ed. 3, 214-216.

Sydenham EW; Shephard GS; Thiel PG. Liquid chromatographic determination of fumonisins B₁, B₂, and B₃ in foods and feeds. J AOAC International. 1992, 75: 2, 313-318.

Sydenham EW; Shephard GS; Thiel PG; Marasas WFO; Rheeder JP; Peralta-Sanhueza CE; Gonzalez HHL; Resnik SL. Fumonisins in Argentinian field-trial corn. J Ag Food Chem. 1993, 41: 6, 891-895.

Szigeti G; Erdos A; Krause B. Feeding of fusariotoxin (T₂ toxin) contaminated maize as a predisposing factor in pyosepticaemia of horses. Magyar-Allatorvosok-Lapja. 1977, 32: 4, 243-245.

Takatori K; Kamada M; Fukunaga Y; Kumanomido T; Hirasawa K; Nigishi M; Takada K; Oikawa M. Emericella nidulans isolated from horses with guttural pouch mycosis in Japan. Bulletin Eq Res Institute. 1984, No.21, 81-87.

Thiel PG; Marasas WFO; Sydenham EW; Shephard GS; Gelderblom WCA. The implications of naturally occurring levels of fumonisins in corn for human and animal health. Mycopathologia. 1992, 117: 1-2, 3-9.

Thiel PG; Shephard GS; Sydenham EW; Marasas WFO; Nelson PE; Wilson TM. Levels of fumonisins B₁ and B₂ in feeds associated with confirmed cases of equine leukoencephalomalacia. J Ag Food Chemistry. 1991, 39: 1, 109-111.

Tunev SS; Ehrhart EJ; Jensen HE; Foreman JH; Richter RA; Messick JB. Necrotizing mycotic vasculitis with cerebral infarction caused by Aspergillus niger in a horse with acute typhlocolitis. Vet Pathol. 1999, 36: 4, 347-351.

Uboh CE; Rudy JA; Railing FA; Enright JM; Shoemaker JM; Kahler MC; Shellenberger JM; Kemecezi Z; Das DN; Soma LR; Leonard JM. Postmortem tissue samples: an alternative to urine and blood for drug analysis in racehorses. J Analytical Toxicology. 1995, 19: 5, 307-315.

Verma R; Gupta BR. Isolation of monomorphic fungi from reproductive tract of mares. Indian J Comparative Microbiology, Immunology Infectious

Vesonder R; Haliburton J; Stubblefield R; Gilmore W; Peterson S. *Aspergillus flavus* and aflatoxins B₁, B₂, and M₁ in corn associated with equine death. Archives Environmental Contamination Toxicology. 1991, 20: 1, 151-153.

Vesonder R; Haliburton J; Golinski P. Toxicity of field samples and *Fusarium moniliforme* from feed associated with equine-leucoencephalomalacia. Archives Environmental Contamination Toxicology. 1989, 18: 3, 439-442.

Villahoz MD; Moras EV; Barboni AM; Scharf V; Mechaca ES; De Guglielmone R. Reproductive problems in pregnant mares grazing fescue pasture in Argentina. Proceedings 10th International Congress on Animal Reproduction Artificial Insemination, Urbana Champaign, 10-14 June 1984. 1984, II: 100.

Wichtel JJ; Whitacre MD; Yates DJ; Van Camp SD. Comparison of the effects of PGF₂α and bromocryptine in pregnant beagle bitches. Theriogenology. 1990, 33: 4, 829-836.

Wilson TM; Ross PF; Rice LG; Osweiler GD; Nelson HA; Owens DL; Plattner RD; Reggiardo C; Noon TH; Pickrell JW. Fumonisin B₁, levels associated with an epizootic of equine leukoencephalomalacia. J Vet Diagnostic Investigation. 1990a, 2: 3, 213-216.

Wilson TM; Ross PF; Owens DL; Rice LG; Green SA; Jenkins SJ; Nelson HA. Experimental reproduction of ELEM. A study to determine the minimum toxic dose in ponies. Mycopathologia. 1992, 117: 1-2, 115-120.

Wilson TM; Ledet AE; Owens DL; Rice LG; Nelson HA; Ostweiller GD; Ross PF. Experimental liver disease in ponies associated with the ingestion of a
Molds and Mycotoxins

Xie YF; Wang ZX; Qin S; Li ZS; Liu XY; Liu BF; Wang QA; Zhao ZX; Song ZZ. Abortion in horses caused by aflatoxins. Acta Vet Zootechnica-Sinica. 1991, 22: 2, 145-149.
